Tripple the fluorescence signal

Adaptive optics in multi photon microscopy is implemented on the excitation pathway and  brings big improvement to the quantity of fluorescence signal. Correcting the sample induced aberrations improves the ‘sharpness’ of the focal spot and so the two-photon effect with a typical gain factor of 3 to 5 times. The increase of the fluorescence signal allows to reach much deeper layers of the sample or to decrease the intensity of the excitation laser in order to minimize the photo-toxicity effects.

An example of nonlinear microscopy (THG) on a drosophila larva. The uncorrected and corrected image with adaptive optics on the left and on the right.  In this case, the signal was increased by a factor of 3 and small details became discernible (see zooms).  (Image produced in collaboration with Emmanuel Baurepaire, LOB, Ecole Polytechnique, France).


Multiphoton Microscopy

Publications where AOKit Bio was used in multiphoton microscopy

B. Sun, P. S. Salter, M. J. Booth. “Pulse front adaptive optics in two-photon microscopy.” (2015) Opt. Lett.,40, 4999-5002.

A. Facomprez, E. Beaurepaire, D. Débarre. “Accuracy of correction in modal sensorless adaptive optics.” (2012) Opt. Express20, 2837–2849.

J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, D. Débarre. “3D resolved mapping of optical aberrations in thick samples” (2012) Biomed. Opt. Express3, 1898–1913.

R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, X. Levecq, D. Artigas, P. Loza-Alvarez. “Depth aberrations characterization in linear and nonlinear microscopy schemes using a shack-Hartmann wavefront sensor.” (2012) Proc. SPIE8227, 82271D+.

A. Facomprez, E. Beaurepaire, D. Debarre. “Correction accuracy in image-based adaptive optics for nonlinear microscopy.” (2012) Proc. SPIE8227, 822709-1.

D. Débarre, T. Vieille, A. Facomprez, P. Mahou, E. Beaurepaire. “Calibration of an adaptive microscope using phase diversity.” (2012) Proc. SPIE8227, 822 708+.

R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, P. Loza-Alvarez. “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy.” (2011) Biomed. Opt. Express2, 3135+.

A. Thayil, M. J. Booth. “Self calibration of sensorless adaptive optical microscopes.” (2011) Journal of the European Optical Society: Rapid Publications6. Available at:

A. Thayil, T. Watanabe, A. Jesacher, T. Wilson, S. Srinivas, M. Booth. “Long-term imaging of mouse embryos using adaptive harmonic generation microscopy.” (2011) J. Biomed.Opt.16, 046 018+.

R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, D. Artigas, P. Loza-Alvarez. “Direct aberrations correction in two photon microcopy by a single on-axis measurement.” (2011) Proc. OSA, 1029754+.

R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. Olarte, S. I. C. O. Santos, X. Levecq, D. Artigas, P. Loza-Alvarez. “Practical optical quality assessment and correction of a nonlinear microscope.” (2010) Proc. SPIE7570, 75700W+.

T. Watanabe, A. Thayil, A. Jesacher, K. Grieve, D. Debarre, T. Wilson, M. Booth, S. Srinivas. “Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy.” (2010) BMC Cell Biol.11, 38+.

N. Olivier, D. Débarre, E. Beaurepaire. “Dynamic aberration correction for multiharmonic microscopy.” (2009) Opt. Lett.34, 3145–3147.

A. Jesacher, A. Thayil, K. Grieve, D. Débarre, T. Watanabe, T. Wilson, S. Srinivas, M. Booth. “Adaptive harmonic generation microscopy of mammalian embryos.” (2009) Opt. Lett.34, 3154–3156.


Service Documents

AOKit Bio

AOKit Bio | Specification sheet

Publication list | Micao and AOkit Bio