

LIFT 680

Wavefront sensor
The Best-in-class

Ultra-high spatial resolution High accuracy Alignment-free

LIFT 680 +

For the LIFT 680, Imagine Optic has merged the reliability and accuracy of a Shack-Hartmann wavefront sensor with the ultra-high resolution of LIFT.

This generation features the new SpotTracker™ technology. It provides absolute wavefront and tilt information, eliminating alignment requirements for faster and easier implementation.

Compatible with the Optical Engineer Companion modular system: easily combine the accessories you need

APPLICATIONS

Successfully used in the most demanding applications in optical metrology, microscopy, and laser diagnostics, the LIFT 680 performs multiple functions :

- + Characterize complex optics, including meta-surface and freeform optics
- + Quantify laser impact (LIDT)
- + Perform surface characterization on high and middle frequencies mirrors
- + Predict the performance of optical systems in terms of focusing capability or imaging quality
- + Quantify the effects of temperature and gravity on system performance
- + Drive a wavefront corrector to correct for system aberrations

FEATURES

The LIFT 680 enables you to perform multiple functions by combining :

- + Ultra-high spatial resolution of 680 x 504, allowing characterization over several hundreds of Zernike polynomials
- + Accuracy of $\lambda/100$ RMS permitting small defects detection
- + Dynamic range superior to 1000 λ for direct wavefront acquisition of converging and diverging beams

SPECIFICATIONS*

OPERATING SPECS

Aperture dimension
Phase points resolution
Number of microlenses
Maximum acquisition frequency
Calibrated wavelength range
Minimum power
External trigger
Operating system

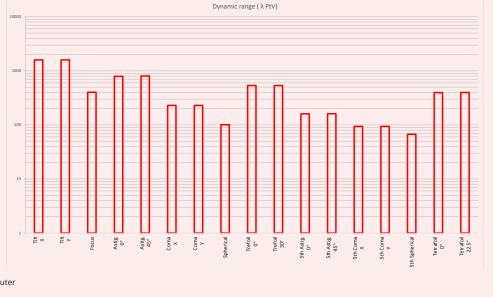
OPTICAL SPECS

Repeatability
Absolute wavefront measurement accuracy
Spatial sampling
Local radius of curvature dynamic range

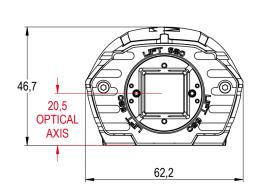
MISC

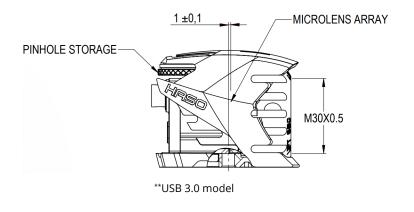
Dimension (Height x Width x Length) Weight for USB version Working temperature Interface Power consumption 680 x 504 170 x 126 30 Hz (USB 3.0) or 8 Hz (with GigE converter) 400 - 750 nm 0.7 nW TTL signal Windows 10 & 11

< λ /200 RMS λ /100 or 6 nm RMS ~ 20 μ m ± 0.004 m to ± ∞


13.8 x 10.2 mm²

47 x 62 x 60 mm³ (USB 3.0) 200 g 15 - 30 °C USB 3.0 or optional GigE converter 3.6 W


LIFT 680


Dynamic range at λ = 635 nm

*Subject to changes without further notice /!\ Acquisition & processing frequencies depend on computer

DIMENSIONS (mm)**

SOFTWARE

WAVEVIEW™ Metrology Software

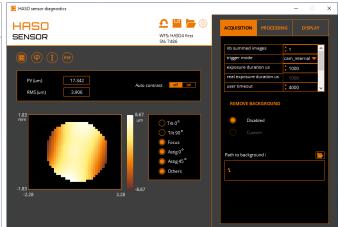
WAVEVIEW™ is the most advanced wavefront measurement and analysis software.

It offers more than 150 features and tools optimized for a wide range of highly demanding applications.

Options:

- + Extensions for PSF, MTF, M², Strehl ratio and advanced Zernike
- + Optional SDK in C/C++, LabVIEW and Python


WAVETUNE™ Adaptive Optics Software


WAVETUNE™ is a unique software that seamlessly combines wavefront measurement and correction features with extensive instrument diagnostics. It is perfectly adapted to our HASO wavefront sensors, ILAO STAR, MIRAO and mu-DM deformable mirrors, as well as to a wide range of active components.

Options:

+ Optional SDK in C/C++, LabVIEW and Python

CONTACT US

Imagine Optic Headquarters
18, rue Charles de Gaulle
91400 ORSAY · France
Phone +33 (0)1 64 86 15 60
sales@imagine-optic.com
www.imagine-optic.com

