

HASO SWIR

Wavefront sensor **The InGaAs**

High accuracy SWIR range Alignment-free

HASO SWIR +

A great choice for short wavelength infrared applications, ideal for industry and laboratories.

This generation features the new SpotTracker[™] technology. It provides absolute wavefront and tilt information, eliminating alignment requirements for faster and easier implementation.

Compatible with the Optical Engineer Companion modular system: easily combine the accessories you need.

APPLICATIONS

Successfully used in the most demanding applications in optical metrology, microscopy, and laser diagnostics, the HASO SWIR performs multiple functions:

+ Quantify aberrations in optical systems for LIDAR, free-space communication, space and defense, etc.

- + Align the system to ensure that it performs at its best
- + Predict the performance of optical systems in terms of focusing capability (PSF) or imaging quality (MTF)
- + Verify that the optics comply with specifications
- + Directly measure the optical system's wavelength dependency
- + Drive a wavefront corrector to correct for system aberrations
- + Check whether the optical mount overly distorts the optics
- + Diagnostic of ultra-short-pulses with the Gated version

FEATURES

- + Laser beam deviation control better than 3 µrad RMS
- + Collimation diagnostic up to curvature radii over 300m
- + Live wavefront acquisition. Measurement accuracy $\lambda/100~\text{RMS}$
- guaranteed for beams down to F/5
- + True tilt measurement, curvature, astigmatism and high-order aberrations quantification
- + Ultra-shot exposure time (Gated version)

Two options are available:

+ HASO SWIR

+ HASO SWIR Gated with ultra-short exposure time feature to synchronize with a pulsed laser.

SPECIFICATIONS

OPERATING SPECS

Aperture dimension Number of microlenses Maximum acquisition frequency Calibrated wavelength range Minimum power External trigger Operating system

OPTICAL SPECS

Repeatability Absolute wavefront measurement accuracy Spatial sampling Tilt dynamic range Focus dynamic range

MISC

Dimensions (Height x Width x Length) Weight for USB version Working temperature Interface Power consumption Exposure time of Gated version 9.30 x 7.44 mm² 40 x 32 150 Hz 0.9 - 1.7 μm 0.3 pW TTL signal Windows 10

λ/200 RMS λ/100 RMS ~ 232.5 μm > ± 3° ± 0.017 m to ± ∞

75 x 78 x 63 mm³ 250 g 15 - 30 °C USB 3.0 < 5 W 100 ns - 9 μs

Dynamic range (λ PtV) 1000 100 10 1 Coma 0° Coma 90° Trefoil 0° Trefoil 90° 5th Coma 90° Tetrafoil 0° 0° ∐i 90° Focus Astig. 0° Astig. 45° Spherical 5th Astig. 0° 5th Astig. 45° 5th Coma 0° 5th Spherical

HASD SWIR Dynamic range at $\lambda = 600 \text{ nm}$

SOFTWARE

WAVEVIEW[™] Metrology Software

WAVEVIEW[™] is the most advanced wavefront measurement and analysis software.

It offers more than 150 features and tools optimized for a wide range of highly demanding applications.

Options :

+ Extensions for PSF, MTF and Strehl ratio

+ Optional SDK in C/C++, LabVIEW and Python

WAVETUNE[™] Adaptive Optics Software

WAVETUNE[™] is a unique software that seamlessly combines wavefront measurement and correction features with extensive instrument diagnostics. It is perfectly adapted to our HASO wavefront sensors, ILAO STAR, MIRAO and mu-DM deformable mirrors, as well as to a wide range of active components.

Options :

+ Optional SDK in C/C++, LabVIEW and Python

Imagine Optic Headquarters 18, rue Charles de Gaulle

91400 ORSAY · France Phone +33 (0)1 64 86 15 60 sales@imagine-optic.com www.imagine-optic.com

